Mycological Identification of Some Fungi Isolated from Meat Products and Spices with Molecular Identification of Some *Penicillium* Isolates

Ashraf A. Abd El-Tawab¹, Eman M. El-Diasty², Dalia F. Khater³, Yahya M. Al-Baaly*³

¹Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Benha University, Egypt; ²Department of Mycology, Animal Health Research Institute (AHRI), Ministry of Agriculture, Dokki, Giza, Egypt; ³Tanta lab branch, Animal Health Research Institute (AHRI), Ministry of Agriculture.

INTRODUCTION

Meat products are the most palatable of highly nutritive value foods for human being as they are important sources for protein, fat, essential amino acids, minerals, vitamins and other nutrients (Biesalski, 2005). On the other hand, they are considered as an ideal culture medium for growth of many organisms because of the high moisture, the high percentage of nitrogenous compounds, plentiful supply of minerals, some fermentable carbohydrates (glycogen) and of a favorable pH for most microorganisms (Alahakoon et al., 2015).

Moulds are common inhabitants of soil, water and may be dispersed through the air and water and by the activities of small animals, particularly insects (Rawat, 2015). Mould gaining access into meat product from meat, spices, and other ingredients, from environment, equipment, and handlers during processing affect the status of the products (Morshdy et al., 2015). Contamination of meat products
with different mould species considers a real hazard as it affecting the quality of these meat products by increasing the opportunity for its spoilage and deterioration (Alcaide-Molina et al., 2009).

The increase in the production of processed foods and high demand for meat is the major reason behind the rapid increase in spices consumption (Little et al., 2003). Spices are largely produced in countries where tropical climates are favorable to mycotoxin contamination. Furthermore, they are usually dried on the ground in the open air in poor hygienic conditions that even more promote growth of mold and production of mycotoxin (Martins et al., 2001).

The growth of some mould species is dangerous, because they may be produced mycotoxins (Empting, 2009). Mycotoxin, is one of the problems threatening human and animal health in food industry (Kaynarca et al., 2019). Studies have discussed their toxicogenic, nephrotoxic, hepatotoxic, carcinogenic, immunosuppressive and mutagenic characteristics of mycotoxins (Da Rocha et al., 2014).

Molecular approaches have been applied as an alternative assay replacing cumbersome and time-consuming microbiological and chemical methods for the detection and identification of mould (Niessen, 2008). PCR-based methods for simultaneous detection of mould are useful tools to be used in food safety programs. These rapid and sensitive techniques allow taking corrective actions during food processing or storage for avoiding accumulation of mycotoxins in them (Rodriguez et al., 2017). Internal transcribed region of the DNA (ITS) are the best tool for the identification of fungi (Mirhendi et al., 2007). Therefore, this study was carried out to throw light on the mycological aspects of some meat products and spices with molecular characterisation of some Penicillium isolates existing in such products.

MATERIALS AND METHODS

ISOLATION AND IDENTIFICATION OF MOULD

Twenty five grams from each sample of 120 meat products and 33 spices (collected from supermarkets in Gharbia governorate, Egypt) were carefully and aseptically homogenized in a blender with 225 ml of sterile peptone water 0.1% to form a dilution of 1:10, from each tenth fold serial dilutions were accomplished up to 10^6. One ml water 0.1% to form a dilution of 1:10, from each tenth isolates were picked up from the DRBC agar and cultured into slope Sabauroud dextrose agar (SDA) (Oxoid) and incubated at 25°C for 5-7 days. The isolated colonies were picked up from the DRBC agar then incubated at 25°C for 5-7 days. The colonies appearance, exudate production, pigmentation and reverse coloration were assessed and colony diameters were measured and recorded (Pitt and Hocking, 2009).

PCR AMPLIFICATION AND SEQUENCING

DNA extraction from four penicillium isolates using DNeasy plant Mini kit Qiagen Genomic as described by manufacturer manual of Qiagen, Germany. Cat. No. 69104. DNA samples were tested in 50 μl reaction volume in a 0.2 ml eppendorf tube, containing 25 μl PCR Master Mix, 1 μl of each primer, 3 μl target DNA, complete to a final volume of 50 μl with sterile PCR water. Penicillium isolates were identified via ITS-PCR of rDNA region with ITS15’-TCCGTAGGTGAACTCCTGG-3’ and ITS25’-TCTTCGGCTTTAGATGC-3’ (560 bp) (White et al., 1990). PCR amplification conditions for four Penicillium isolates were: 5 min initial denaturation step followed by 35 cycles at 95°C for 30 sec, 35 cycles at 56°C for 30 sec and 35 cycles for 72°C for 1min and a final extension step at 72°C for 10 min. Amplification products were electrophoresed in agarose gels (1.5% w/v) (Agarose, Sigma, USA) and stained with ethidium bromide using Gene Ruler 100bp DNA Ladder (H3 RTU, Cat. No. DM003-R500 Gene Direx, BIO-HELIx Co., LTD). The amplified fragments were purified using Gene Jet PCR purification kit; Fermentas (Cat no. KO701). Sequencing was performed by sequencing to the PCR product on GATC Company by use ABI 3730x1 DNA sequences by using forward and reverse primers. Sequences were deposited at gene bank and phylogenetic analysis was done by MEGA X (Kumar et al., 2018), while sequence divergence and identity percent by DNA star (Felsenstein, 1985) and (Tamura et al., 2004).

RESULTS

Aspergillus spp, was the most prevalent species in the examined samples. It constituted 24 (88.88%) in luncheon, 36 (85.71%) in kofta, 35 (85.36%) in basterma and 46 (58.23%) in burger followed by Penicillium spp. 3 (11.12%), 6 (14.29%), 3 (7.32%) and 12 (15.18%) respectively. Mucor spp.3 (7.32%) in basterma, 9 (11.42%) in burger, while Geotrichum spp. 6 (7.59%), Cladosporium spp, Acremonium spp. 3 (3.79%) detected in burger samples only. While in spices, the predominant mould genera isolated were Aspergillus spp. 86 (55.48%), Penicillium 24 (15.48%), Mucor spp 21 (13.55%), Cladosporium spp 9 (5.80%), Acremonium spp 3 (1.94%) Scurospilis 6 (3.85%), Clavereolaria 3 (1.94%) and Emericella.nudulans 3 (1.94%). Further identification to Penicillium isolates was done in meat products, the predominant Penicillium species isolated from burger samples were P. citrinum 6 (7.59%) followed by P. aurantigeum and P.chrysogenum 3 (3.795%). Where P. Paxilli and P. restrictum were the most isolated Penicillium species from kofta samples with incidence rate 3 (7.14%)
Table 1: Incidence of mould isolated from examined meat product samples.

<table>
<thead>
<tr>
<th>Isolated mould</th>
<th>Luncheon</th>
<th>Kofta</th>
<th>Basterma</th>
<th>Burger</th>
<th>Spices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>%</td>
<td>No</td>
<td>%</td>
<td>No</td>
</tr>
<tr>
<td>Aspergillus spp.</td>
<td>24</td>
<td>88.88</td>
<td>36</td>
<td>85.71</td>
<td>35</td>
</tr>
<tr>
<td>Acremonium spp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Cladosporium spp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Geotrichum spp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Penicillium spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aurantigreum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P. carneum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P. chrysogenum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P. citreognigrum</td>
<td>3</td>
<td>11.12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. citrinum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>P. crustosum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>P. Paxilli</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>7.145</td>
<td>-</td>
</tr>
<tr>
<td>P. restrictum</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>7.145</td>
<td>-</td>
</tr>
<tr>
<td>P. implicatum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. simplicissimum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total of Penicillium spp</td>
<td>3</td>
<td>11.12</td>
<td>6</td>
<td>14.29</td>
<td>3</td>
</tr>
<tr>
<td>Mucor spp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Claveolaria</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Emericella. Nudulans</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scorulopsis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>100</td>
<td>42</td>
<td>100</td>
<td>41</td>
</tr>
</tbody>
</table>

for both isolates. *P. citreognigrum* 3 (11.12%) isolated from luncheon While *P. carneum* 3 (7.32%) from basterma, While in spices the isolated *Penicillium* species were 6 (3.87%), 3 (1.94%), 3 (1.94%), 6 (3.87%), 3 (1.94%), 3 (1.94%) for *P. aurantigreum, P. chrysogenum, P. citrinum, P. crustosum, P. implicatium, P. simplicissimum*, respectively. (Table 1).

Three *Penicillium* isolates (*P. chrysogenum, P. carneum* and *P. restrictum*) from meat products and one *Penicillium* isolate (*P. crustosum*) from spices were positive on agarose gel electrophoresis (Figure 1) and the strains were successfully amplified and sequenced. The obtained sequences were deposited at NCBI under accession No. (Gene bank accession number: MK643347 *P. restrictum* isolate AYMA4, MK643348 *P. chrysogenum* isolate AYMA5, MK643349 *P. carneum* isolate AYMA6 and MK643350 *P. crustosum* isolate AYMA7. *Penicillium* isolates compared with published strains in Gene Bank through phylogenetic tree (Figure 2) and percent identity (Figure 3).

DISCUSSION

The presence of moulds may cause spoilage of meat products by breaking down their components and liberating different acids and gas with subsequent change of their odour and flavor. Some moulds are capable of producing toxic metabolites known as mycotoxins such as aflatoxins which may cause carcinogenic effect (Pitt and Hocking, 2009).

Figure 1: PCR products of ITS1-ITS2 regions from representative clinical isolates of *Penicillium* species Lane: 1 control Negative; Lane 2: control positive; Lane 3: 100 bp DNA ladder; Lane 4: *P. restrictum*; Lane 5: *P. chrysogenum*; Lane 6: *P. carneum* and Lane 7: *P. crustosum.*
In recent years, there has also been a steady increase in the production and consumption of processed meat products worldwide because of their high nutritive value and convenience (Rajic et al., 2007).

Identification of *Penicillium* species is not easy. Many common species look like to the uninitiated. At the same time, there is a great deal of variability within the species. In recent years, molecular approaches have been used increasingly in identification and phylogenetic classification of filamentous fungi and their application has led to the reconsideration of several genera (Bruns et al., 1991).

Phylogenetic analysis showed that *P. restrictum* isolate AYMA4 accession no. (MK643347) was isolated but in different branches, away from *P. chrysogenum* isolate AYMA5, *P. carneum* isolate AYMA6, *P. crustosum* isolate AYMA7 but remained in the same cluster. While *P. restrictum* isolate AYMA4 accession no. (MK643347) still in the same group of *Talaromyces atroroseus* isolate JJGG–11 and *Penicillium* sp. Pen–EME–EG–1. While *P. chrysogenum* isolate AYMA5 and *P. crustosum* isolate AYMA7 had common ancestor. *P. chrysogenum* isolate AYMA5 still in the same group of *Penicillium chrysogenum* strain SCSIO 00258 and *Penicillium roquefortii* strain SCSIO 00259. While *Penicillium chrysogenum* isolate AYMA6 and *Penicillium roquefortii* strain SCSIO 00259 had common ancestor. *Penicillium roquefortii* strain SCSIO 00259 was isolated but in different branches, away from *P. chrysogenum* isolate AYMA5 and *P. crustosum* isolate AYMA7 but remained in the same cluster and still in the same group of *Penicillium roquefortii* (Figure 2).

The sequence similarity of *P. restrictum* isolate AYMA4 for the strains of *P. chrysogenum* isolate AYMA5, *P. carneum* isolate AYMA6, *P. crustosum* isolate AYMA7, *Talaromyces*
CONCLUSION

Meat products and spices highly contaminated with Aspergillus spp. and Penicillium spp. which may gain access during the manufacturing process leading to high economic losses and have a public health hazard due to the production of mycotoxins. The result demonstrates the fact that the unhygienic and poor sanitary conditions under which meat products and spices are handled and processed are not acceptable from sanitary point of view. It has further evidence that the undesirable level of contamination which might have acquired from the environment and agents. and to obtain wholesome safe and sound meat products, the principles Good Manufacturing Practices (GMP) and Hazard Analysis and Critical Control Point (HACCP) must be adopted.

ACKNOWLEDGEMENTS

This work was supported by Department of Mycology, Animal Health Research Institute (AHRI), Egypt. We thank all staff members of Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Benha University

AUTHORS CONTRIBUTION

All authors contributed equally.

CONFLICT OF INTEREST

No conflict of interest declared.

REFERENCES

- Mandeel QA (2005). Fungal contamination of some...

