Study the Effects of Follicular Size on some Biochemical Follicular Fluid Composition in She Camel (*Camelus Dromedarius*)

Mayada S. Hassan¹, Ali J. Al-Nuaimi¹, Ali M. Al-Yasari², Yasser J. Jameel¹

¹College of Veterinary Medicine, University of Kerbala, Kerbala, Iraq; ²College of Veterinary Medicine, Al-Muthana University, Muthanna, Iraq.

Abstract | This study was designed to estimate the biochemical composition of ovary follicular fluid in relation to its size variations in local Iraqi She camels (*Camelus dromedarius*). Hundred ovary were collected from 50 adult she camel, 4 to 10 years old that slaughtered at Al Najaf abattoir during the breeding season of cameldids. The ovaries were transferred immediately to the laboratory in a cold box. Later on, the follicular fluid was collected separately from small and large size follicles, (3-9 mm) and (10-19 mm) respectively. The fluid was kept at -4°C for further analysis. The follicular fluid samples were analyzed to estimate the metabolic composition (cholesterol, glucose and total protein), and the ionic compositions (calcium, sodium and potassium). The results of this study revealed significant increase in int he glucose and cholesterol concentration, while there were significant decrease in the total protein in large size follicles. Meanwhile, significant increase was seen in the concentration of Na⁺ and Ca²⁺ in relation to the size of the follicles. However, significant decrease was occurred in the concentrations of K with increasing follicle size. In conclusion, the results of this study revealed a significant variations in the concentration of the follicular fluid metabolic and the ionic compositions with the variations of its size.

Keywords | Biochemical, *Camelus dromedaries*, Ionic composition, Follicular fluid, Follicular size.

INTRODUCTION

Camel is the unique animal that can live for several weeks without water. Camels are providing milk, hid and meat though a harsh and severe conditions. Moreover, it is used in racing and competition. There are two species of camel included in the genus *Camelus*. The first species is *Camelus dromedaries*, the dromedary or one-humped camel, the world population of which is estimated to be 15,368,000, with approximately 80% in Africa and 20% in Asia. The second species is *C. Bactrians*, the bactrian or two-humped camel, of which there are 1.7 million in their natural habitat in Asia (Al Salih, 2016; Wardah, 2004). The breeding of the local cameldids is seasonal that start at autumn and increase drastically until the end of winter, meanwhile, it decrease significantly at spring and summer (El-Harairy et al., 2010). The follicular wave is a term replace the estrous cycle. It reflex the physiological, structural and behavior changes that occur during identified period between one ovulation and another because camels are induced ovulation. Besides, the ovulatory activities are only limited during the follicular changes (Padalino et al., 2016). The formation of follicular fluid is starting inside the ovary follicle earlier during its development (Bodhagannahalli et al., 2015). It produces from local substances related with the metabolic activities of follicular cell (Gerard et al., 2002). Therefore, the compositions of follicular fluid are alike but not identical to blood plasma (Nishimoto et al., 2009). The ovary cells produce soluble substance like steroids hormone, growth factors (Fortune et al., 2004) inhibition factors (Aruna Kumari et al., 2007), ionic and fat substances (Nandi et al., 2008), as well as some of minerals and salts (Sharma and Vasta, 1998). All these substances play important role in the metabolic activities of the ovary cells. Consequently, the functional sta-
The follicular fluid has biological activities, it is providing the internal environment for growing of ova and granular cells and protect the ova from the external condition. It is a good media and contains fat, steroids, amino acid and different protein and minerals. This substance provide an environment that provide fat, steroids and amino acids and different protein that provide a good environment for maturation of ova and effect on the conception (El-Shahat et al., 2013). The follicular fluid has the ability to keep the Meiosis of the egg in silent stage and protect the released egg from analysis during fertilization (Chang et al., 2005), and raising the attractiveness, movement and hat reaction of the sperm (Somfai et al., 2012). Follicular fluid is also played a big role in auto-organization (Autocrine) and (Paracrine) of follicular cells, moreover it regulates the maturity of the cytoplasm and nucleus (Cytoplasm) of the egg and ovulation (Campbell, 2009). Knowledge of the follicular fluid components can give information about the needs of the growth and maturity of the follicles and eggs, moreover it is used as a guide to configure an active complement culture medium for maturity and identify the requirements of egg development (Zeidan et al., 2011). The study of follicular fluid in she camels is benefited the improving of in vitro maturation of the egg (IVM) (El-Hassanein et al., 2010). The metabolic activities and characteristic of follicular cell wall during its growth and development are changeable, and variations in its biochemical compositions and size are expected (Ali et al., 2011). Consequently, this study was designed to estimate the concentrations of metabolic and ionic constituents including cholesterol, glucose, total protein and Calcium, Sodium and Potassium of the follicular fluid and its relation to the follicular size of she camels.

MATERIALS AND METHODS

Collection of Follicular Fluid

The study was conducted in the laboratories in the Faculty of Veterinary Medicine/ University of Kerbala during the period extended from 1/10/2017 until 31/12/2017. Hundred ovaries were collected from 50 adult, (4-10) years old she camels that slaughtered in Al Najaf province abattoir during the breeding season. All these animals were in good healthy with a normal genital tract according to post-mortem examination. The ovaries collected and placed in a plastic bag containing the normal phosphate buffered saline (PBS) (0.9%). Then, the bag was placed in a cool box and immediately transferred to the laboratory within two hours. In the laboratory, all ovaries were washed twice with PBS and placed on the filter sheets to absorb the excess water (Nandi et al., 2007). Subsequently, the follicles were removed from each other. The follicles of each ovary were measured by the Vernier calipers (Nichi-Japan) and were classified according to these measurements into two categories, the small and large groups with (3-9 mm) and (10-19mm) in diameter respectively. The follicular fluids were collected separately from each animal in each groups and placed in sterilized plastic tube and kept at -4 °C for further analysis.

Biochemical Analysis of Follicular Fluid

The samples of the follicular fluid were analyzed to measure the concentration of the metabolic and ionic components in both groups. A commercial kit from RANDOX-kit-England was used to estimate the concentration of glucose and total protein using spectrophotometer-PD303-Germany the optical method that read at 546 nanometers wavelength. A commercial kit, Cromatest-kit-Spain was used to estimate the cholesterol concentration using optical spectrometer and 500 nanometers wavelength. The Bio-maghréb-kit-Tunisia was used to determine the ions concentration using the optical spectrometer that read at 500 nm, 550 nm and 578 nm wavelength for sodium, calcium and potassium ions respectively.

Statistical Analysis

Complete randomized design was used to investigate the effect of the follicular size on the metabolic and ionic components concentration level. The mean differences between the averages using a multiplicity test (Duncan, 1955) to compare the differences between the averages. Statistical analysis of data was done according to SAS program (SAS, 2004).

RESULTS AND DISCUSSION

A significant increase (P<0.05) in the concentration of cholesterol of the follicular fluid was appeared with increase in the follicular size (Table 1). Its concentrations in the small and large follicles were 5.22 ± 0.40 mg / dL and in 7.54 ± 0.03 mg / dL respectively. The follicular cholesterol is derived from two sources, the acetate in the follicular granular cells and from the lipo-proteins of the blood plasma (Nandi et al., 2007). Cholesterol is considered as the primary substance for the building of the lipid hormones, besides the follicular fluid contains only high-density lipoproteins (HDL). Therefore, the follicular granular cells are depended on the cholesterol derived from these plasma-derived fats by crossing the basement membrane of its cells (Mishra et al., 2003). The low-density lipoproteins (LDL) molecules was lack of in the follicular fluid because its own a large size molecules that cant cross the blood vessel- follicular wall barriers (Clarke et al., 2006). The granular cells need cholesterol during its growth and multiplication. Therefore, it is withdrawn from follicular fluid that led to decrease its concentration in the small size...
follicle. Nonetheless, when the size of follicle enlarged, its cells multiplication are decreased and lead to release cholesterol into the follicular fluid that use in the formation of lipid hormones (Su et al., 2008). The results of the current study are agreed with previous studies in she camel, buffalo and sheep that done by Albomohsen et al. (2011); Arshad et al. (2005) and Nandi et al. (2007) respectively. Meanwhile, the results of the current study are incompatible with previous reports in she camel, buffalo and goats that done by Rahman et al. (2008) and Abd Ellah et al. (2010) and Deshpande and Pathak (2010) respectively.

A significant increase ($P<0.05$) was appeared in the concentration of the follicular glucose in relation with increasing of follicular size. Its concentrations were 43.64 ± 4.76 mg / dl and 71.32 ± 10.08 mg / dL in small follicles and large follicles respectively. Glucose plays an important role for the ovarian metabolism because it acts as an important energy source for the ovary via anaerobic metabolism pathway that leads to formation of lactate (Boland et al., 1994; Rabiee et al.,1999). In small follicle, the significant increase in the glucose concentration may be due to lack of its metabolism and consumption by the few numbers of granular cells in compare to large follicles (Nandi et al., 2007; Leroy et al., 2004). However, other researcher found that high permeability of blood vessel- follicle wall barriers during the follicular growth led to filtrate more glucose that high permeability of blood vessel- follicle wall barrier. The lipoprotein are secreted from follicular granular cells and are involved in the new follicular formation and its blood vessels, and linear division of egg before ovulation. Therefore, it will increase at the beginning of the formation of the small follicle, thus increase in its follicular fluid (Hunter et al., 2004). However, the decreasing of protein concentration in the large size follicle was the increasing in the production of lipid hormones, that need binding proteins, therefore its consume is decrease in large follicles (Kiker et al., 2005). Moreover, the results of the current study are in agreement with previous studies in camels (Rahman et al., 2008; Albomohsen et al., 2011), nevertheless it is incompatible with (Arshad et al., 2005), but are disagreed with (Nandi et al., 2007) in sheep and buffalo (Arshad et al., 2005).

<table>
<thead>
<tr>
<th>Table 1: shows the concentration of metabolic components in follicular fluid of small and large follicles of the local camels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition of Metabolites</td>
</tr>
<tr>
<td>Large follicle (10-19 mm)</td>
</tr>
<tr>
<td>Small follicle (3-9 mm)</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
</tr>
<tr>
<td>7.54 ± 0.03 (A)</td>
</tr>
<tr>
<td>71.32 ± 10.08 (A)</td>
</tr>
<tr>
<td>43.64 ± 4.76(C)</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
</tr>
<tr>
<td>5.22 ± 0.40 (B)</td>
</tr>
<tr>
<td>43.6 ± 0.13 (B)</td>
</tr>
<tr>
<td>6.14 ± 0.19 (A)</td>
</tr>
<tr>
<td>Total protein (g/dl)</td>
</tr>
<tr>
<td>Values with different letters within the same row are significantly different ($P <0.05$)</td>
</tr>
</tbody>
</table>

A significant decrease ($P <0.05$) in the total protein concentration with the increase in the size of the follicle is also appeared in Table 1. Its concentrations in follicular fluid was 6.14 ± 0.19 g/dL in small follicle, while its concentration decreased to 4.63 ± 0.13 g/dL in large follicle. The follicle needs a protein at the beginning of its formation to build up the multiple layers of granular cells and the cells surrounding the egg. Therefore, this process make the follicle needs a lot of protein that will withdraw from the blood serum and excreted in the follicle and led to increase its concentrations in the small follicles (Chang et al., 2005). The lipoprotein are secreted from follicular granular cells and are involved in the new follicular formation and its blood vessels, and linear division of egg before ovulation. Therefore, it will increase at the beginning of the formation of the small follicle, thus increase in its follicular fluid (Hunter et al., 2004). However, the decreasing of protein concentration in the large size follicle was the increasing in the production of lipid hormones, that need binding proteins, therefore its consume is decrease in large follicles (Kiker et al., 2005). Moreover, the results of the current study are in agreement with previous studies in camels (Rahman et al., 2008; Albomohsen et al., 2011), nevertheless it is incompatible with (Arshad et al., 2005), but are disagreed with (Nandi et al., 2007) in sheep and buffalo (Arshad et al., 2005).

A significant decrease ($P <0.05$) in the total protein concentration with the increase in the size of the follicle is also appeared in Table 1. Its concentrations in follicular fluid was 6.14 ± 0.19 g/dL in small follicle, while its concentration decreased to 4.63 ± 0.13 g/dL in large follicle. The follicle needs a protein at the beginning of its formation to build up the multiple layers of granular cells and the cells surrounding the egg. Therefore, this process make the follicle needs a lot of protein that will withdraw from the blood serum and excreted in the follicle and led to increase its concentrations in the small follicles (Chang et al., 2005). The lipoprotein are secreted from follicular granular cells and are involved in the new follicular formation and its blood vessels, and linear division of egg before ovulation. Therefore, it will increase at the beginning of the formation of the small follicle, thus increase in its follicular fluid (Hunter et al., 2004). However, the decreasing of protein concentration in the large size follicle was the increasing in the production of lipid hormones, that need binding proteins, therefore its consume is decrease in large follicles (Kiker et al., 2005). Moreover, the results of the current study are in agreement with previous studies in camels (Rahman et al., 2008; Albomohsen et al., 2011), nevertheless it is incompatible with (Arshad et al., 2005), but are disagreed with (Nandi et al., 2007) in sheep and buffalo (Arshad et al., 2005).

Table 2 shows the concentration of ionic components in follicular fluid of small and large follicles of the local camels.

| Table 2 | shows the concentration of ionic components in follicular fluid of small and large follicles of the local camels |
|---|
| **Composition of Metabolites** |
| **Large follicle** (10-19 mm) |
| **Small follicle** (3-9 mm) |
| **Cholesterol** (mg/dl) |
| 7.54 ± 0.03 (A) |
| 71.32 ± 10.08 (A) |
| 43.64 ± 4.76(C) |
| **Glucose** (mg/dl) |
| 5.22 ± 0.40 (B) |
| 43.6 ± 0.13 (B) |
| 6.14 ± 0.19 (A) |
| **Total protein** (g/dl) |
| Values with different letters within the same row are significantly different ($P <0.05$) |

A significant decrease ($P <0.05$) in the total protein concentration with the increase in the size of the follicle is also appeared in Table 1. Its concentrations in follicular fluid was 6.14 ± 0.19 g/dL in small follicle, while its concentration decreased to 4.63 ± 0.13 g/dL in large follicle. The follicle needs a protein at the beginning of its formation to build up the multiple layers of granular cells and the cells surrounding the egg. Therefore, this process make the follicle needs a lot of protein that will withdraw from the blood serum and excreted in the follicle and led to increase its concentrations in the small follicles (Chang et al., 2005). The lipoprotein are secreted from follicular granular cells and are involved in the new follicular formation and its blood vessels, and linear division of egg before ovulation. Therefore, it will increase at the beginning of the formation of the small follicle, thus increase in its follicular fluid (Hunter et al., 2004). However, the decreasing of protein concentration in the large size follicle was the increasing in the production of lipid hormones, that need binding proteins, therefore its consume is decrease in large follicles (Kiker et al., 2005). Moreover, the results of the current study are in agreement with previous studies in camels (Rahman et al., 2008; Albomohsen et al., 2011), nevertheless it is incompatible with (Arshad et al., 2005), but are disagreed with (Nandi et al., 2007) in sheep and buffalo (Arshad et al., 2005).
The concentration of sodium ion was affected significantly (P <0.05) with variations of the follicular size. Its concentrations was 93.33 ± 4.75 mmol/L in small follicle size. Meanwhile, it was increased with increasing of follicular size that reached 145.96 ± 4.26 mmol/L. Sodium ion has a relation with vitality of the follicle and its activities in the production of estrogen that has the ability in retained sodium inside the cells (Nandi et al., 2007). The size of follicle was increased with its growth continuity because the movement of water from blood into follicular fluid. However, this process requires osmosis process across cell wall that increase with the elevation of sodium ions in the large follicle (Sharma et al., 1995). The results of the present study are agreed with previous studies in camels (Al Fattah et al., 2012), cattle (Iwata et al., 2004), buffalo (Kaur et al.,1997), goats (Bordoloi et al., 2001) and sheep (Nandi et al., 2007). While, these results are incompatible with (Rabiee et al.,1999) in cattle and (Arshad et al., 2005) in buffalo.

The concentration of potassium ions was significantly reduced (P <0.05) with the increase of follicular size. Its concentration was 12.96 ± 0.57 mmol/L in the fluid of small follicular size. However, its concentration was significantly decreased in to 6.12 ± 0.57 mmol / L in the fluid of large follicular size. The decreasing of the potassium ion concentration is related with the follicle development that lead to increase glucose consumption. This process lead to move potassium ions from extracellular spaces to intracellular space and thus reduces its concentration in the follicular fluid when follicular size enlarge. The concentration of potassium ions in the follicular fluid revealed high significance in compare to its concentration in the serum of potassium ions in the follicular fluid revealed high significance in compare to its concentration in the serum.

In conclusion, this study approved the variations in the concentration of metabolic and ionic components of follicular fluids in relation to the follicular size and its development stage. The results of this study can be consider in the formulation of egg culture media use in the in vitro fertilization.

ACKNOWLEDGEMENTS

We would like to thank The College of Veterinary Medicine/Al Muthanna University for accepting our article in 2nd Colloquium for Camel Research and giving us this opportunity to express our science.

CONFLICT OF INTEREST

This research is a personal non-profit work and there is no conflict of interest.

AUTHORS CONTRIBUTION

Both of Mayada S. Hassan and Ali J. Al-Nuaimiare responsible for animal work and samples collection. Ali M. Al-Yasari and Yasser J. Jameel are responsible for data analysis, writing correction and proof reading.

REFERENCES

- Al-Salih K (2016). Observations on dromedary Arabian camel) and its diseases. MRVSA 5 (Special issue) 1st Iraqi colloquium on camel diseases and management. 1-10.
- Bodhaganahalli M, Manjunatha S, Al-Bulushi, Narayan P

Singh D, Sharma MK, Pandey RS (1999). Biochemical and...

